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Abstract. An excitonic cluster model, which can take into account both the strong correlation
effect of 3d electrons and the itinerant nature of electronic excitations, and consequently both the
bound and unbound states of electrons and holes on the same footing, is applied to describe optical
excitations with even symmetry in insulating cuprates, i.e. parent crystals of high-temperature
superconductors. These states are observable in large-shift Raman scattering and two-photon
absorption spectra.

1. Introduction

Competitive behaviour between the strong correlation of 3d electrons and the itinerant property
of doped holes in transition-metal oxides of perovskite structure induces a rich variety of
transport phenomena such as high-temperature superconductors in cuprates [1] and colossal
negative magneto-resistance in manganites [2]. Even in the non-doped crystals which are
antiferromagnetic insulators, nonlinear as well as linear optical responses have been studied
experimentally [3–25]. Theoretical understanding, however, is still controversial because of
the difficulty of describing the competitive behaviours between the strong correlation effect
of 3d electrons on Cu ions and the itinerant property of the particles and holes involved.
To describe these optical responses, we have proposed the excitonic cluster model [26] by
taking into account both the strong correlation effect of 3d electrons and the itinerant nature of
electronic excitations. Consequently both the electron–hole bound and unbound states can be
described on the same footing. Note that the effective transfer matrix elements t0 between the
transition-metal 3d and the oxygen 2p orbitals, and the elements tp between the neighbouring
oxygen 2p orbitals, and the binding energy V of the charge-transfer (CT) exciton are all
of the same order of magnitude for many perovskite-type cuprates. On the other hand, the
correlation energy U of 3d electrons and the energy separation |Ed −Ep| between the O(2pσ )
and Cu(3dx2−y2) are much larger than those values of t0, tp and V [26–31]. The excitonic
cluster model is formulated by making the best use of this situation [26, 32].

The excitonic cluster model was applied first to the dipole-allowed states withEu symmetry
of the D4h representation [32], because the linear absorption spectrum and the resonance-
enhancement spectrum of two-magnon Raman scattering (RS) are described in terms of Eu
modes. As a result, the detailed structures of these spectra were found to depend sensitively
on the values of t0, tp and V , although the essential spectra are determined by CuO2 planes.
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Figure 1. Crystal structures of: (A) La2CuO4, (B) Sr2CuO2Cl2, (C) Nd2CuO4 and
(D) YBa2Cu3O6.

Figure 2. Schematic diagram of the hybridization of the O 2px,y and Cu 3dx2−y2 orbitals. The +
and − signs represent the phase of wavefunctions of O 2px,y orbitals around Cu 3dx2−y2 orbitals
in A- and B-sublattices.

We could also understand the material dependence of these values, e.g. the dependence on the
crystal structures such as shown in figure 1. In the present paper, we apply the excitonic cluster
model to the even-symmetry modes in the visible wavelength region, which are observed by the
nonlinear optical responses. First we will be able to remove the inconsistencies in assignment
of the observed signals on the large-shift RS spectra and second to give the correct assignment
on the two-photon absorption (TPA) spectrum of the insulating AF cuprates of perovskite-type.

In section 2, basis functions of even modes symmetry adapted to the D4h representation
are derived for the three-band Mott–Hubbard Hamiltonian. An energy matrix is calculated
with these even-symmetry functions as bases and is diagonalized for the TPA-active and RS-
active A1g, B1g, A2g and B2g modes in section 3. Some characteristics of large-shift RS and
TPA spectra due to these modes are derived in section 4. We compare in section 5 the present
results obtained in sections 3 and 4 with the observed spectra and discuss some remaining
discrepancies.
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2. Hamiltonian and even-symmetry states

We discuss in the present paper the even-symmetry states of cuprates: (a) La2CuO4;
(b) Sr2CuO2Cl2; (c) Nd2CuO4; and (d) YBa2Cu3O6. These have perovskite structures but
the types are different as shown in figure 1. These differences result in delicate differences
in the optical spectra through the different relative magnitudes of t0, tp and V as discussed
in [26, 32]. However, the basic spectra look similar as the low-lying optical excitation of these
crystals in the visible region is determined in common by the CuO2 plane. The relevant orbitals,
i.e. Cu(3dx2−y2 ), of A- and B-sublattices in the AF structure and O(2pσ = 2px,y) surrounding
these are drawn in figure 2 together with the phases of these wavefunctions chosen in this
paper. We will use the same three-band Mott–Hubbard Hamiltonian as in [26, 32]: the O 2pσ
band (plσ , p

†
lσ ) with its central energy Ep +Up, singly and doubly occupied Cu 3dx2−y2 bands

(diσ , d
†
iσ )withEd andEd +U as central energies, respectively. This system has D4h symmetry

and is described in the site-representation basis as

Hel =
∑
i,σ

Edd
†
iσ diσ +

∑
l,σ

Epp
†
lσ plσ +H ′

el + U
∑
i

d
†
i↑di↑d

†
i↓di↓ + Up

∑
l

p
†
l↑pl↑p

†
l↓pl↓

+V
∑
iσσ ′

∑
l∈{i}

d
†
iσ diσp

†
lσ ′plσ ′ (1)

H ′
el = t0

∑
iσ

∑
l∈{i}

d
†
iσ plσ + tp

∑
lσ

∑
l′∈{l}

p
†
lσ pl′σ . (2)

Here U and Up are the on-site Coulomb repulsion at the Cu and O sites, respectively, and V
is the nearest-neighbour Cu–O interatomic Coulomb repulsion. The first and second terms
of H ′

el (2) bring in, respectively, the hybridization between the nearest-neighbour Cu and
O orbitals (l ∈ {i} in equation (2)), and that between the two nearest-neighbour oxygen
orbitals (l′ ∈ {l} in equation (2)). Note that our non-relativistic Hamiltonian (1) and (2) with
D4h symmetry does not contain: (a) spin–orbit interaction; (b) magnetic anisotropy energy
which determines the spin direction; and (c) magnetic dipole–dipole interaction. Therefore,
only the relative spin configuration is determined by (d) the Heisenberg–Dirac exchange
interaction, while the absolute direction of the spin relative to the crystal axis cannot be
fixed by the exchange interaction itself. In the ordered phase of the real crystal, the spin
configuration is determined by the combined effect of processes (a), (b), (c) and (d). Therefore,
it would be natural to use the observed magnetic group in describing the response of the
crystals. Even when the crystal suffers the structure change into the orthorhombic phase
and/or the AF phase transition, the Hamiltonian with D4h symmetry gives a good starting
point as will be discussed in section 5. The electronic ground state of this Hamiltonian
has one electron (3dx2−y2) per Cu2+ ion and has fully occupied 2p electrons per O2− ion
surrounding this Cu2+ ion. The ground state |g〉 is represented in the site representation as
follows:

|g〉 ≡
A∏

m+n=even

d
†
↑(2m, 2n)

B∏
m+n=odd

d
†
↓(2m, 2n)

∏
m+n=odd

p
†
↑(m, n)p

†
↓(m, n) |0〉 (3)

where the vacuum |0〉 is defined by the product of whole O(2p)4 and Cu(3d)8 in which two
2pσ electrons and two 3dx2−y2 electrons are missing, respectively. This AF ground state can
be accepted for two-dimensional systems as this was well confirmed experimentally [33]
and the quantum fluctuation could be described by the spin-wave excitations as [12–14]
have shown. For one-dimensional systems, however, the quantum fluctuation is known
to be so large that we confine ourselves to the two-dimensional systems in the present
paper.
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Figure 3. (A) Charge-transfer excitation ψA(1, 0) in which a down-spin electron in the 2px
orbital of the O2−(1, 0) ion is transferred to the A-sublattice Cu ion, and (B) ψA

(2,0)(1, 0) in which
two electrons, i.e. an up-spin electron in O−(1, 0) 2px and a down-spin 3dx2−y2 electron on the
nearest-neighbour Cu(2, 0) ion of the B-sublattice are exchanged. Equivalent excitations under
D4h symmetry are also drawn in both (A) and (B).

The radiation field can induce the CT excitations through the transition dipole moment
which is linearly proportional to t0 and also to the unit vector drawn from the ith lattice point
to the lth one. The CT excitation ψA(1, 0) = d

†
A↓(0, 0)px↓(1, 0)|g〉 represents the formation

of a bound CT exciton with the ‘electron’ (3dx2−y2)2 at the A-sublattice Cu (0, 0) and the
‘hole’ (2p)5 at O (1, 0) as shown in figure 3(A). When two electrons of O(2px↑) at (1, 0)
and Cu(3dx2−y2↓) at the B-sublattice (2, 0) are exchanged through the second-order process
in t0, the state ψA

(2,0)(1, 0) = d
†
A↓(0, 0)px↑(1, 0)d†

B↑(2, 0)dB↓(2, 0)|g〉 is created as shown in
figure 3(B). Here the argument (1, 0) of ψA

(2,0)(1, 0) also describes the location of the ‘hole’
O− (now with its down spin) and the suffix (2, 0) gives that of the reversed Cu2+ spin in the
B-sublattice.

Reflecting the D4h symmetry of the CuO2 plane, we have four equivalent CT excitations:
ψA(B)(1, 0), ψA(B)(0, 1), ψA(B)(−1, 0) and ψA(B)(0,−1) around the A-(B-)sublattice Cu
ions, corresponding to the four diagrams in figure 3(A). Four dipole-allowed states around
the A-sublattice are mixed with each other by the second-order process in t0, i.e. t1 =
t20 /(U − Up − Ep − V ) and tp. When we diagonalize the energy matrix,

E0 t1 + tp t1 t1 + tp
t1 + tp E0 t1 + tp t1
t1 t1 + tp E0 t1 + tp

t1 + tp t1 t1 + tp E0




ψA(1, 0)
ψA(0, 1)
ψA(−1, 0)
ψA(0,−1)

 = E


ψA(1, 0)
ψA(0, 1)
ψA(−1, 0)
ψA(0,−1)

 (4)

we obtain the eigenfunctions and eigenenergies of the four CT states

�1
aA = 1

2
{ψA(1, 0) + ψA(0, 1) + ψA(−1, 0) + ψA(0,−1)} E0 + 3t1 + 2tp



Optical excitations with even symmetry in insulating cuprates 8851

�1
bA = 1

2
{ψA(1, 0)− ψA(0, 1) + ψA(−1, 0)− ψA(0,−1)} E0 − t1 − 2tp

�1
exA = 1√

2
{ψA(1, 0)− ψA(−1, 0)} E0 − t1

�1
eyA = 1√

2
{ψA(0, 1)− ψA(0,−1)} E0 − t1. (5)

Here the diagonal energy E0 is evaluated to the fourth order in t0, i.e. to the order of J the
superexchange energy which induces the AF structure, in addition to the exchange energy to
the second order in t0

E0 ≡ U − Ep − Up − V + t1 − t ′1 − t ′2 + J (6)

where

t ′1 = t20

U − Ep − Up − 2V
(7)

t2 = t20

Ep + Up
t ′2 = t20

Ep + Up + V
(8)

and

J = 4t40
(U − Ep − Up − V )2

[
1

U
+

1

2(U − Ep − Up − 2V )

]
. (9)

Thus we have four states A1g(�
1
aA), B1g(�

1
bA), and two-fold degenerate Eu (�1

exA and �1
eyA)

around theA-sublattice, that are symmetry-adapted according to the irreducible representations
of the group D4h. In the paramagnetic phase with the symmetry D4h, the charge distribution
�∗
g�g has A1g symmetry of the point group D4h. The symmetry of the excited states in (5),

which is judged by that of its product with the ground state�∗
g , or the symmetry of excitons [32],

is A1g , B1g and two-fold degenerate Eu of the paramagnetic group D4h, in this order. Note
here that the symmetry operator R affects only the orbital part of the product, e.g. �∗

g�
1
aA,

without rotating the spin vector of magnetic ions. We also have similar expressions for the
eigenfunctions and eigenenergies around theB-sublattice. Only the states withEx,y

u symmetry
(�1

exA and �1
eyA) can contribute to the absorption and two-magnon RS. The states A1g(�

1
aA)

and B1g(�
1
bA) are observable in the TPA spectrum and in the large-shift RS in which the

incident light frequency ω is much larger than the excitation energy E(B1g) and E(A1g).
Only the states with the same symmetry in the site representation are intermixed with each

other throughH ′
el (2). The states�m

eEA(n)were used as the bases to describe the linear and two-
magnon Raman scattering. Here the superscriptm denotes the distance between the ‘electron’
at the origin and the ‘hole’, while the argument n stands for the separation between the reversed
spin and the ‘hole’, and the argument (0) represents the case of the nearest neighbour and no
argument indicates the case without reserved spin. We derive the basis function with A1g and
B1g symmetry of the order of t0 in the same way as for �m

eEA(n). The same second-order
exchanges t1 and t2 described above induce the states�1

aA(0) and�1
bA(0) shown in figure 3(B)

�1
aA(0) = 1

2 {ψA
(2,0)(1, 0) + ψA

(0,2)(0, 1) + ψA
(−2,0)(−1, 0) + ψA

(0,−2)(0,−1)} (10)

�1
bA(0) = 1

2 {ψA
(2,0)(1, 0)− ψA

(0,2)(0, 1) + ψA
(−2,0)(−1, 0)− ψA

(0,−2)(0,−1)}. (11)

When the ‘hole’ propagates to the second- and third-neighbour oxygens measured from the
doubly occupied Cu, the ‘electron’ at the (0, 0) site, the following A1g and B1g states are
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derived after applying two steps of CT t0 on �1
aA and �1

bA, respectively†,

�2
aA = 1

2
√

2
{ψA(2, 1) + ψA(1, 2) + ψA(−1, 2) + ψA(−2, 1)

+ψA(−2,−1) + ψA(−1,−2) + ψA(1,−2) + ψA(2,−1)} (12)

�2
bA = 1

2
√

2
{ψA(2, 1)− ψA(1, 2)− ψA(−1, 2) + ψA(−2, 1)

+ψA(−2,−1)− ψA(−1,−2)− ψA(1,−2) + ψA(2,−1)} (13)

�3
aA = 1

2
{ψA(3, 0) + ψA(0, 3) + ψA(−3, 0) + ψA(0,−3)} (14)

�3
bA = 1

2
{ψA(3, 0)− ψA(0, 3) + ψA(−3, 0)− ψA(0,−3)}. (15)

These states are of the same order in t0 as �1
aA(0) and �1

bA(0). To the next higher order in t0,
i.e. in t40 , we must include the following states with the ‘electron’ and ‘hole’ still in the nearest
neighbour but with the ‘hole’ [O(2pσ↓)] and the reserved spin (the magnon) propagating away
from the original locations given in the states �1

aA(0) and �1
bA(0):

�1
aA(2) = 1

2
{ψA

(2,0)(−1, 0) + ψA
(0,2)(0,−1) + ψA

(−2,0)(1, 0) + ψA
(0,−2)(0, 1)} (16)

�1
bA(2) = 1

2
{ψA

(2,0)(−1, 0)− ψA
(0,2)(0,−1) + ψA

(−2,0)(1, 0)− ψA
(0,−2)(0, 1)} (17)

�1
aA(1) = 1

2
√

2
{ψA

(2,0)(0, 1) + ψA
(0,2)(−1, 0) + ψA

(−2,0)(0,−1) + ψA
(0,−2)(1, 0)

+ψA
(2,0)(0,−1) + ψA

(0,2)(1, 0) + ψA
(−2,0)(0, 1) + ψA

(0,−2)(−1, 0)} (18)

�1
bA(1) = 1

2
√

2
{ψA

(2,0)(0, 1)− ψA
(0,2)(−1, 0) + ψA

(−2,0)(0,−1)− ψA
(0,−2)(1, 0)

+ψA
(2,0)(0,−1)− ψA

(0,2)(1, 0) + ψA
(−2,0)(0, 1)− ψA

(0,−2)(−1, 0)}. (19)

The last set of basis functions, in the fourth order of t0, contains A2g and B2g representations
in D4h symmetry and is expressed as

�1
a′A(1) = 1

2
√

2
{ψA

(2,0)(0, 1) + ψA
(0,2)(−1, 0) + ψA

(−2,0)(0,−1) + ψA
(0,−2)(1, 0)

−ψA
(2,0)(0,−1)− ψA

(0,2)(1, 0)− ψA
(−2,0)(0, 1)− ψA

(0,−2)(−1, 0)} (20)

�1
b′A(1) = 1

2
√

2
{ψA

(2,0)(0, 1)− ψA
(0,2)(−1, 0) + ψA

(−2,0)(0,−1)− ψA
(0,−2)(1, 0)

−ψA
(2,0)(0,−1) + ψA

(0,2)(1, 9)− ψA
(−2,0)(0, 1) + ψA

(0,−2)(−1, 0)}. (21)

Here a′ and b′ correspond to A2g and B2g , respectively.
When we exchange the ‘hole’ O(2p)5 (2px↑ electron) in �2

aA and �3
aA and the 3dx2−y2↓

electron on the nearest-neighbour Cu(3d)9 in the B-sublattice, we have the following states
which are the same order in t0 as �1

aA(2),�
1
aA(1) and �1

a′A(1), i.e. by t40 higher than ψ1
aA and

�1
bA:

�2
aA(0) = 1

2
√

2
{ψA

(2,0)(2, 1) + ψA
(0,2)(1, 2) + ψA

(0,2)(−1, 2) + ψA
(−2,0)(−2, 1)

+ψA
(−2,0)(−2,−1) + ψA

(0,−2)(−1,−2) + ψA
(0,−2)(1,−2) + ψA

(2,0)(2,−1)} (22)

† See, for example, [34] for the methods of making the symmetry-adapted basis functions.
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�2
bA(0) = 1

2
√

2
{ψA

(2,0)(2, 1)− ψA
(0,2)(1, 2)− ψA

(0,2)(−1, 2) + ψA
(−2,0)(−2, 1)

+ψA
(−2,0)(−2,−1)− ψA

(0,−2)(−1,−2)− ψA
(0,−2)(1,−2) + ψA

(2,0)(2,−1)} (23)

�3
aA(0) = 1

2
{ψA

(2,0)(3, 0) + ψA
(0,2)(0, 3) + ψA

(−2,0)(−3, 0) + ψA
(0,−2)(0,−3)} (24)

�3
bA(0) = 1

2
{ψA

(2,0)(3, 0)− ψA
(0,2)(0, 3) + ψA

(−2,0)(−3, 0)− ψA
(0,−2)(0,−3)}. (25)

To this order, we must also include the following three sets of states:

�4
aA = 1

2
√

2
{ψA(3, 2) + ψA(2, 3) + ψA(−2, 3) + ψA(−3, 2)

+ψA(−3,−2) + ψA(−2,−3) + ψA(2,−3) + ψA(3,−2)} (26)

�4
bA = 1

2
√

2
{ψA(3, 2)− ψA(2, 3)− ψA(−2, 3) + ψA(−3, 2)

+ψA(−3,−2)− ψA(−2,−3)− ψA(2,−3) + ψA(3,−2)} (27)

�5
aA = 1

2
√

2
{ψA(4, 1) + ψA(1, 4) + ψA(−1, 4) + ψA(−4, 1)

+ψA(−4,−1) + ψA(−1,−4) + ψA(1,−4) + ψA(4,−1)} (28)

�5
bA = 1

2
√

2
{ψA(4, 1)− ψA(1, 4)− ψA(−1, 4) + ψA(−4, 1)

+ψA(−4,−1)− ψA(−1,−4)− ψA(1,−4) + ψA(4,−1)} (29)

�6
aA = 1

2
{ψA(5, 0) + ψA(0, 5) + ψA(−5, 0) + ψA(0,−5)} (30)

�6
bA = 1

2
{ψA(5, 0)− ψA(0, 5) + ψA(−5, 0)− ψA(0,−5)}. (31)

The basis functions �n
aA(0) and �n

bA(0) (n = 4, 5, 6) in which two electrons are exchanged
between [O(2p)5, 2pσ↑] and the nearest-neighbour B-sublattice [Cu(3d)9, 3dx2−y2↓] are
obtained from the above equations and are higher by t60 order than �1

aA and �1
bA.

We repeat these procedures to obtain the corresponding basis functions around the B-
sublattice. Only the symmetric state with respect to the interchange of A- and B-sublattices
can contribute to the optical responses, that is for α = a[A1g] or b[B1g],

�m
α+ = 1√

2
{�m

αA +�m
αB} (32)

�m
α+(n) = 1√

2
{�m

αA(n) +�m
αB(n)}. (33)

Then we can finally express the eigenstates belonging to the eigenenergy Ei as a symmetric
linear combination of the states (32) and (33) with the same symmetry species:

�α+[i] = ai[α]�1
α+ + bi[α]�1

α+(0) + ci[α]�1
α+(2) + di[α]�1

α+(1)

+ei[α]�2
α+ + fi[α]�2

α+(0) + gi[α]�3
α+ + hi[α]�3

α+(0)

+ji[α]�4
α+ + ki[α]�4

α+(0) + li[α]�5
α+ +mi[α]�5

α+(0) + · · · . (34)

We have considered the excited states symmetry adapted to D4h, taking into account
the AF A- and B-sublattices. One may wonder how translational symmetry is taken into
consideration in our treatment. Actually, the point group D4h here is to be regarded as the
k-group (wavevector group) of the space group at the gamma point, because we are concerned
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only with the elementary excitations which the visible light can excite. The relation between our
treatment and the usual band calculation which neglects the AF structure is simple. Reciprocal-
lattice points on the Brillouin-zone boundary in the latter calculation are to be folded on the
gamma point of the AF Brillouin zone, so that the separation between the highest and lowest
energies in the present calculation will give the observed band width as discussed in [32].

The effect of the translational motion of the exciton as a whole, or the exciton dispersion,
however, is not likely to be important as estimated at the end of section 5.

3. Energy matrix and its diagonalization

We derive the secular equation to obtain the eigenenergies {Ei} and the corresponding
eigenfunctions {ψα+, α = A1g and B1g} in terms of the set of basis functions:

{�1
α+, �

1
α+(0),�

1
α+(2),�

1
α+(1),�

2
α+, �

2
α+(0),�

3
α+, �

3
α+(0),�

4
α+, �

4
α+(0),�

5
α+, �

5
α+(0), . . .}.

(35)

Here the CT effect H ′
el in (2) is taken into account by the degenerate perturbation method

among the basis states (35), and the off-diagonal matrix element is evaluated to first order in tp
and to second order in t0. Note that all the basis states in (35) are the states of single ‘electron’
and ‘hole’ excitations while the intermediate states in evaluating the off-diagonal as well as
the diagonal matrices are those of two or zero pair excitations.

The eigenenergies and eigenfunctions of the A1g and B1g modes below 3.0 eV have been
found to be independent of the number n of the basis functions as long as n � 3, where n is the
‘electron’ and ‘hole’ separation. Therefore we list the secular equation for the case of n = 3:

Mα'α = Eα'α α = a(A1g) or b(B1g) (36)

where

Mα =
(
Hα
I,I Hα

I,II

Hα
II,I Hα

II,II

)
'α =


ai[α]
bi[α]
ci[α]
· · ·

 . (37)

For the mode α = a(A1g),

Ha
I,I =


εa0 −(t ′2 + 2t ′3) 0 0

−(t ′2 + 2t ′3) ε′
0 + 2t ′1 − t ′2 − 2t ′3 2t1 − t ′1

√
2(tp + 2t1 − t ′1)

0 2t1 − t ′1 ε′
0 + t1

√
2(tp + t1)

0
√

2(tp + 2t1 − t ′1)
√

2(tp + t1) ε′
0 + t1

 (38)

Ha
I,II =


√

2(tp − τ) −√
2(γ + τ) −τ −(2γ + τ)

−√
2(γ + τ)

√
2(tp − τ) −(γ + τ) −τ

0 0 −γ 0
−γ 0 0 0

 (39)

Ha
II,II =


εa1 −(t ′1 + 2t2 + t3)

√
2(tp − t2) −√

2(t ′1 + t2)
−(t ′1 + 2t2 + t3) ε′

1 − 3t − 2 − 2t3 −√
2(t ′1 + t2)

√
2(tp − t2)√

2(tp − t2) −√
2(t ′1 + t2) ε1 − t2 − t3 −(t2 + t3)

−√
2(t ′1 + t2)

√
2(tp − t2) −t2 − t3 ε′

1 − 2(t2 + t3)

 . (40)

For the mode α = b(B1g), the [1, 1] component εa0 = ε0 + 2tp + 8t1 − 3t ′1 − t ′2 − 2t ′3
of equation (38) is replaced by εb0 = ε0 − 2tp + t ′1 − t ′2 − 2t ′3, and the [1, 1] component
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Table 1. Material constants (in eV).

U Up Ep t0 tp V J

La2CuO4 10.0 3.5 3 0.82 0.40 0.50 0.14
Sr2CuO2Cl2 9.76 3.4 3 0.84 0.36 0.42 0.12
Gd2CuO4 9.65 3.4 3 0.85 0.30 0.40 0.15
Nd2CuO4 9.62 3.4 3 0.85 0.30 0.40 0.13
YBa2Cu3O6 10.0 3.4 3 1.0 0.55 0.35 0.12

Table 2. The eigenenergies and eigenvectors of A1g and B1g modes for La2CuO4.

Ei(A1g) (eV) ai bi ci di ei fi gi hi

2.33 0.16 0.58 0.38 −0.54 0.06 −0.06 0.34 0.28
2.63 0.07 0.27 −0.36 0.25 0.67 −0.01 −0.21 0.49
2.68 0.18 −0.15 0.06 0.11 0.20 0.84 0.43 −0.06
3.15 0.33 −0.14 −0.24 0.29 −0.47 −0.19 0.43 0.54
3.43 0.05 −0.56 0.60 −0.08 0.14 0.00 −0.28 0.47
4.00 0.55 0.07 −0.25 −0.33 −0.31 0.33 −0.57 0.05
4.91 0.48 0.31 0.47 0.60 −0.00 −0.11 −0.13 −0.26
5.89 0.55 −0.37 −0.16 −0.27 0.41 −0.37 0.24 −0.31

Ei(B1g) (eV)

1.71 0.85 0.22 0.08 −0.13 −0.05 0.22 0.23 0.32
2.43 0.23 −0.50 −0.43 0.59 0.09 0.36 −0.16 −0.03
2.50 0.11 −0.37 0.18 −0.08 −0.80 0.00 0.19 −0.37
2.75 0.19 0.03 −0.30 0.14 −0.30 −0.73 −0.37 0.31
3.41 0.16 −0.43 0.56 −0.23 0.17 0.05 −0.62 0.10
3.48 0.24 0.39 −0.29 −0.22 0.00 0.13 −0.49 −0.64
4.60 0.23 0.14 0.47 0.56 0.25 −0.37 0.14 −0.42
5.55 0.21 −0.46 −0.28 −0.43 0.41 −0.37 0.31 −0.26

εa1 = ε1 + tp − t1 − 2t ′1 − 2t ′2 − t3 of equation (40) is replaced by εb1 = ε1 − tp + t ′1 − 2t2 − 2t3.
In these equations, we have set

ε0 = U − Ep − Up − V + J and ε′
0 = ε0 + 3

2J (41)

ε1 = ε0 + V and ε′
1 = ε1 + 3

2J (42)

γ = 1
2 (t

′
1 + t ′′1 ) τ = 1

2 (t2 + t ′2) (43)

and

t ′′1 = t20

U − Ep − Up − 3V
t3 = t20

U − Ep − 2V
. (44)

Note here that the nearest-neighbour attraction −V is taken into account between extra charges
on O 2px,y and Cu 3dx2−y2 orbitals in the basis states of HI,I , but not for unbound basis states
of HII,II .

We know all material constants which are used in these expressions as shown in
table 1 [26–30]. In terms of these constants, we have diagonalized the secular equations
of A1g and B1g modes. The eigenenergies and eigenvectors are listed in tables 2 to 6 for
La2CuO4, Sr2CuO2Cl2, Nd2CuO4, Gd2CuO4 and YBa2Cu3O6, respectively.

The eigenenergies of A2g and B2g modes are evaluated by using the eigenfunctions
equations (20) and (21), respectively, within this approximation. They are found to be
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Table 3. The eigenenergies and eigenvectors of A1g and B1g modes for Sr2CuO2Cl2.

Ei(A1g) (eV) ai bi ci di ei fi gi hi

2.08 0.41 0.45 0.17 −0.25 0.30 0.32 0.39 0.43
2.41 0.07 −0.25 −0.42 0.53 0.48 0.46 −0.14 0.12
2.53 0.10 −0.35 0.22 −0.01 −0.35 0.61 0.41 −0.41
2.89 0.49 −0.25 −0.22 0.26 −0.54 −0.23 0.14 0.46
3.30 0.02 −0.55 0.63 −0.12 0.17 0.03 −0.33 0.38
3.55 0.54 0.14 −0.13 −0.29 −0.15 0.24 −0.67 −0.25
4.59 0.40 0.19 0.47 0.58 0.17 −0.28 0.02 −0.37
5.51 0.35 −0.44 −0.25 −0.39 0.43 −0.36 0.28 −0.28

Ei(B1g) (eV)

1.59 0.79 0.25 0.06 −0.11 0.09 0.29 0.26 0.37
2.36 0.10 0.07 0.37 −0.43 −0.70 −0.29 0.22 −0.19
2.42 0.31 −0.59 −0.21 0.40 −0.44 0.31 0.01 −0.24
2.59 0.27 0.01 −0.32 0.18 −0.19 −0.66 −0.42 0.37
3.30 0.10 −0.47 0.61 −0.21 0.18 0.07 −0.52 0.20
3.33 0.28 0.35 −0.19 −0.25 0.04 0.15 −0.57 −0.60
4.44 0.26 0.11 0.46 0.55 0.27 −0.38 0.15 −0.41
5.39 0.21 −0.47 −0.30 −0.45 0.41 −0.35 0.31 −0.24

Table 4. The eigenenergies and eigenvectors of A1g and B1g modes for Nd2CuO4.

Ei (A1g) (eV) ai bi ci di ei fi gi hi

1.78 0.43 0.36 0.07 −0.09 0.42 0.43 0.35 0.43
2.40 0.10 0.19 0.47 −0.52 −0.53 −0.12 0.39 −0.12
2.55 0.05 −0.45 0.03 0.21 −0.17 0.69 0.30 −0.40
2.83 0.55 −0.31 −0.21 0.25 −0.51 −0.17 −0.00 0.46
3.26 0.02 0.52 −0.66 0.16 −0.21 −0.07 0.34 −0.32
3.44 0.48 0.18 −0.10 −0.33 −0.10 0.27 −0.66 −0.32
4.47 0.41 0.17 0.46 0.56 0.18 −0.30 0.03 −0.39
5.36 0.33 −0.45 −0.27 −0.41 0.41 −0.35 0.28 −0.27

Ei(B1g) (eV)

1.45 0.71 0.27 0.04 0.07 0.22 0.36 0.27 0.40
2.36 0.27 −0.02 0.34 −0.37 −0.74 −0.20 0.23 −0.15
2.50 0.43 −0.54 −0.35 0.47 −0.33 0.11 −0.25 −0.02
2.56 0.18 0.25 −0.16 −0.05 −0.02 −0.72 −0.40 0.45
3.26 0.04 0.55 −0.65 0.11 −0.18 −0.04 0.25 −0.40
3.30 0.28 0.17 0.08 −0.35 0.13 0.22 −0.69 −0.48
4.35 0.28 0.11 0.45 0.54 0.27 −0.38 0.13 −0.42
5.30 0.22 −0.47 −0.30 −0.46 0.41 −0.34 0.30 −0.24

degenerate and

Ea′ = Eb′ = U − Ep − Up − V + 5
2J. (45)

When we use the material constants in table 1, these eigenenergies are numerically obtained
to be larger than 3.0 eV as shown in table 7.

These eigenenergies of A1g and B1g modes are plotted in figure 4 showing the absorption
spectrum together with the dipole-allowed Eu modes. Two crystals Nd2CuO4 and Gd2CuO4

have very similar material constants and consequently similar spectrum structures. Therefore
the spectrum of Eu,A1g and B1g has been drawn only for Nd2CuO4 in figure 4.
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Table 5. The eigenenergies and eigenvectors of A1g and B1g modes for Gd2CuO4.

Ei(A1g) (eV) ai bi ci di ei fi gi hi

1.83 0.43 0.36 0.07 −0.09 0.42 0.43 0.35 0.43
2.43 0.10 0.19 0.47 −0.52 −0.53 −0.13 0.39 −0.12
2.58 0.05 −0.44 0.04 0.20 −0.18 0.69 0.30 −0.40
2.86 0.54 −0.30 −0.22 0.26 −0.51 −0.17 0.01 0.46
3.29 0.01 0.53 −0.66 0.15 −0.20 −0.06 0.34 −0.33
3.47 0.48 0.18 −0.10 −0.32 −0.10 0.27 −0.66 −0.32
4.50 0.41 0.17 0.46 0.53 0.18 −0.30 0.04 −0.39
5.38 0.33 −0.45 −0.27 −0.41 0.41 −0.35 0.28 −0.27
B1g

1.50 0.71 0.27 0.04 −0.07 0.22 0.36 0.27 0.40
2.40 0.28 −0.02 0.34 −0.36 −0.75 −0.21 0.23 −0.15
2.53 0.42 −0.55 −0.35 0.47 −0.32 0.13 −0.24 −0.03
2.59 0.19 0.23 −0.18 −0.03 −0.02 −0.71 −0.41 0.45
3.29 0.04 0.55 0.65 0.12 −0.19 −0.04 0.27 −0.39
3.32 0.28 0.18 0.07 −0.34 0.13 0.22 −0.68 0.49
4.37 0.28 0.11 0.45 0.54 0.27 −0.38 0.14 −0.42
5.30 0.21 −0.47 −0.30 −0.46 0.41 −0.34 0.30 −0.24

Table 6. The eigenenergies and eigenvectors of A1g and B1g modes for YBa2Cu3O6.

Ei(A1g) (eV) ai bi ci di ei fi gi hi

2.03 0.20 0.56 0.27 −0.41 0.26 0.09 0.37 0.44
2.24 0.10 −0.20 −0.12 0.27 0.38 0.82 0.22 −0.04
2.38 0.03 −0.11 0.38 −0.30 −0.16 0.05 0.13 0.07
3.07 0.25 −0.24 −0.22 0.34 −0.44 −0.13 0.46 0.54
3.56 0.01 −0.58 0.64 −0.12 0.09 0.04 −0.27 0.40
4.38 0.52 0.10 −0.26 −0.30 −0.37 0.34 −0.54 0.13
5.73 0.52 0.30 0.46 0.60 0.00 −0.10 −0.12 −0.13
6.94 0.60 −0.38 −0.18 −0.30 0.38 −0.34 0.21 −0.28

Ei(B1g) (eV)

1.24 0.79 0.25 0.07 −0.13 0.03 0.27 0.28 0.37
2.12 0.14 −0.05 0.23 −0.26 −0.82 −0.33 0.17 −0.22
2.20 0.19 −0.54 −0.17 0.38 −0.16 0.05 0.13 0.07
2.48 0.31 −0.19 −0.43 0.40 −0.17 −0.47 −0.40 0.34
3.44 0.33 0.08 0.13 −0.30 0.10 0.11 −0.76 −0.42
3.55 0.03 0.60 −0.63 0.08 −0.07 −0.01 0.17 −0.44
5.14 0.27 0.05 0.44 0.50 0.32 −0.40 0.21 −0.41
6.44 0.19 −0.49 −0.34 −0.51 0.37 −0.31 0.28 −0.20

Table 7. The lowest levels of A2g and B2g modes (E(A2g) = E(B2g)).

La2CuO4 Sr2CuO2Cl2 Nd2CuO4 Gd2CuO4 YBa2CuO3O6

Ei(A2g) (eV) 3.35 3.24 3.23 3.15 3.35

4. Large-shift Raman and two-photon absorption

The large-shift RS, e.g. due to the CT excitations of A1g, B1g, A2g and B2g modes, is the
second-order nonlinear optical processes. The incident radiation field with angular frequency



8858 E Hanamura et al

Figure 4. Experimental and theoretical absorption spectra ε2(ω) of (a) La2CuO4 [3];
(b) Sr2CuO2Cl2 [3]; (c) Nd2CuO4 [3]; and (d) YBa2Cu3O6 [7]. The full curve is the theoretical
ε2(ω) with the use of ,1,2 = 0.32 eV, ,i�3 = 0.34 eV (La2CuO4), ,1,2 = 0.32 eV,
,i�3 = 0.36 eV (YBa2Cu3O6) and ,1 = 0.25 eV, ,i�2 = 0.44 eV (Nd2CuO4), ,1 = 0.28 eV,
,i�2 = 0.48 eV (Sr2CuO2Cl2) and the broken curve is the experimental ε2(ω). On the bottom
lines, the calculated even-parity modes are drawn in agreement with the observed values for (a),
(b), (c) and (d) with modified assignments.

ωi ≡ ω much larger than the lowest excitation energies E1(A1g), E1(B1g), E(A2g) and
E1(B2g) is scattered into the radiation field with the scattered frequency ωs = ω−E(X) (X =
A1g, B1g, A2g and B2g). The scattering intensity is described by the absolute square of the
Raman tensor:

χ
fg

αβ (ω) =
∑
i �=g,f

{
Pα
f iP

β

ig

Eig − ω − i,i
+

P
β

f iP
α
ig

Eif + ω + i,i

}
. (46)

Here P denotes the crystal transition dipole moment operator and (α, β)mean the polarization
directions of the scattered and incident radiation field, respectively. In the case of the
large-shift RS, the energy difference between the final (f ) and the ground (g) states of the
crystal Efg = Ef − Eg is equal to the lowest excitation energy of Raman-active modes
E1(X) (X = A1g, B1g, A2g and B2g).

The two-photon absorption (TPA) spectrum is also expressed as the square of the following
TPA tensor:

χ
fg

αβ (ω1, ω2) =
∑
i �=g,f

{
Pα
f iP

β

ig

Eig − ω1
+

P
β

f iP
α
ig

Eig − ω2

}
. (47)

The TPA spectrum shows the peak when the sum of two photon energies ω1 + ω2 becomes
equal to the two-photon allowed excitations Efg = Ef −Eg = E(X) (X = A1g, B1g, A2g or
B2g). The intermediate states |i〉 consist of the dipole-allowed states withEu representation of
D4h symmetry. In the present paper, we discuss the polarization dependence of both large-shift
RS and TPA. Let us represent the polarization Pβ of incident light ωi (the first photon ω1 in
the case of TPA) by the polarization vector ε̂1 = (l1,m1, n1) and that Pα of the scattered light
ωs (the second photon ω2 in the case of TPA) by ε̂2 = (l2,m2, n2).

Both large-shift RS and TPA of the insulating cuprates have been observed usually by
using the surface perpendicular to the z-axis. For example, almost all large-shift RS were
observed under the following configurations, z(xx)z̄, z(xy)z̄, z(x ′x ′)z̄, z(x ′y ′)z̄ [20, 21]. Here
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Table 8. Selection rules of RS for D4h and D2h(C2h) point groups. [A]: χxx(A1) = χyy(A1) = p,
χxx(B1) = −χyy(B1) = q, χxy(A2) = −χyx(A2) = −r , χxy(B2) = χyx(B2) = s,
χx′x′ (A1) = χy′y′ (A1) = p, χx′x′ (B2) = −χy′y′ (B2) = s, χx′y′ (B1) = χy′x′ (B1) = −q,
χx′y′ (A2) = −χy′x′ (A2) = r . [B]: χxx(a) = χyy(a) = p, χxx(b) = −χyy(b) = q,
χxy(a) = χyx(a) = s, χxy(b) = −χyx(b) = −r .

z(xx)z̄ z(xy)z̄ z(x′x′)z̄ z(x′y′)z̄ z(x ± iy, x ± iy)z̄ z(x ± iy, x ∓ iy)z̄

[A]: D4h: x′ ‖ [110], y′ ‖ [1̄10]
A1g p p p

B1g q −q q

A2g r −r ±ir
B2g s s ∓is

[B]: D2h(C2h): x′ ‖ [110], y′ ‖ [1̄10], sublattice magnetization ‖ x′

Ag p s p + s p ∓is
B1g(Bg) q r −q − r ±ir q

polarization geometries are described using the Porte notation i(jk)l, where i and l represent
the propagation directions, and j and k the polarization directions of the incident and scattered
light, respectively [35]. We confine ourselves to the configuration of two incident light
rays propagating in the z-direction in both large-shift RS and TPA for simplicity. Then the
polarization dependence of RS (TPA) is described in terms of the polarization angles θ1 and θ2

measured from the x-axis for the incident (or the first photon) and the scattered (or the second
photon) light rays, respectively, as follows [36, 37]:

A1g : p × cos(θ1 − θ2) (48)

B1g : q × cos(θ1 + θ2) (49)

A2g : r × sin(θ2 − θ1) (50)

B2g : s × sin(θ1 + θ2). (51)

See also the table 8 for Raman tensors. The magnitude, for example, of the valuep is estimated
by considering the microscopic mechanism. As long as we choose for the states |g〉, |i〉 and |f 〉
the levels among the states arising from the CT between the O(2pσ ) and Cu(3dx2−y2) orbitals,
both Raman and TPA tensors vanish. When we choose the O(3s) level as the intermediate
state |i〉, p ≡ χxx[A1g] for the large-shift RS per unit cell is evaluated as

χxx[A1g] =
∑
j

〈A1g|P x |O 3s(j)〉〈O 3s(j)|P x |g〉
E3s − E2p − Up − ω

(52)

= a1[A1g]µ′
xµ

′′
x

E3s − E2p − Up − ω
. (53)

Here we have introduced the intra-atomic transition dipole moment µ′
x ≡ 〈O 3s|P x |O 2px〉

and the CT dipole moment µ′′
x ≡ 〈Cu 3dx2−y2 |P x |O 3s〉 between the nearest neighbours on

the x-axis. The expansion coefficient a1[B1g] of the term �1
a+ in equation (34) is nearly equal

to one for the lowest B1g state while a1[A1g] is much smaller than one as tables 2–6 show.
In this approximation, |χxx[B1g]| ≡ |q| > |χxx[A1g]| ≡ |p|. For the TPA tensor, the same
process may be considered to be relevant but the single photon ω1 ≈ ω2 is in the region of
infrared so that the energy denominator of equation (53) becomes a little larger than in the case
of large-shift RS.
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5. Discussion

The absorption spectrum was found to be sensitive to the CT values of t0 and tp as well as
the exciton binding energy V . The material constants are listed in table 1. These values
have been fixed for materials so as to obtain the best agreement between the observed and
calculated absorption spectra as shown in figure 4. First, we note that the values as well as
the signs of t0 and tp are also in good agreement with the first-principles calculations except
for T ′-phase Nd2CuO4 and Gd2CuO4. In the exceptional case, for example, our optimum
value of tp is 0.3 eV while the first-principles value is 0.39 eV for Nd2CuO4 [31]. This
discrepancy will be removed by estimating the presence and absence of the contribution from
apical oxygens [38, 39] to tp through the indirect channel via the 2pz orbital of the apical
oxygens for the T -phase perovskite La2CuO4 and the T ′-phase Nd2CuO4, respectively. When
we subtract this contribution from the value tp of the T -phase for the case of the T ′-phase
without the apical oxygens, we have the tp values which have been obtained as shown in
table 1 by fitting the absorption spectrum. Here the transfer matrix element and the energy
difference between the O(2pσ ) orbital on the CuO2 plane and the apical O(2pz) were assumed
to be 0.3 eV and 2.0 eV, respectively. Second, we could also describe the enhancement spectra
of two-magnon RS for La2CuO4 and YBa2Cu3O6 with agreement between the theory and the
experiment in terms of the material constants determined above [32]. In the present paper, we
have evaluated in terms of these material constants the eigenenergies of even-symmetry modes
which are observable in large-shift RS and TPA spectra.

We compare our calculated eigenenergies of B1g and A1g modes with the observed large-
shift RS signals. Two strong signals were observed below and around 2 eV but their polarization
dependence is not so clear [21]. Two peak energies are found to agree very well with the
calculated eigenenergies of B1g and A1g modes. As we can imagine from the lowest-order
calculation given in (5),E(B1g) = E0 − t1 − tp andE(A1g) = E0 +3t1 +2tp with both positive
t1 and tp, we believe that the lower and higher energy signals correspond, respectively, to the
B1g and A1g modes. However, the assignments of [21] look inconsistent. For example, the
lower (11 900 cm−1) and higher (13 000 cm−1) signals were assigned, respectively, to B1g and
A1g modes for Gd2CuO4, while the assignment was reversed for YBa2Cu3O6. Furthermore,
they claimed that there seemed to be no A1g and B1g Raman features present for La2CuO4.
The signal at 12 000 cm−1 of Gd2CuO4 was assigned to the A2g mode.

Let us discuss this discrepancy. It is well known for La2CuO4 [10] that the paramagnetic
tetragonal phase shows D4h symmetry above 515 K and the orthorhombic phase with D2h is
realized below 515 K. All crystals except Sr2CuO2Cl2 show this phase transition of the crystal
structures. Strictly speaking the point group D4h should not be applied to the AF orthorhombic
phase as the π -rotations C ′

2 and C ′′
2 of D4h around the axes perpendicular to the principal

axis C change the sign of the components of the sublattice magnetization vector in the a–b
plane [40, 41]. We consider both the crystals to have D2h symmetry with [110], [1̄10] and
[001], i.e. x ′-, y ′- and z-axes, as their three two-fold axes even in the AF phase as long as the
sublattice magnetization orients in the [110] direction. This is because the unitary part of the
magnetic group G0 = {Ei, C2x ′ , C2y ′(τ ), C2(τ )} = C2h + C2(τ )C2h with C2h = {E,C2x ′ } is
isomorphic to the group D2h = {E,C2x, C2y, C2}, where τ is the shortest vector connecting
two Cu ions in the A- and B-sublattices.

We summarize the selection rules of large-shift RS for D4h and D2h(C2h) point groups in
table 8. Four Raman-active modes of D4h are merged into two modes of D2h(C2h) as

A1g, B2g −→ Ag(D2h)

−→ Ag(C2h) (54)
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B1g, A2g −→ B1g(D2h)

−→ Bg(C2h). (55)

Therefore it is interesting to observe how different two RS intensities are between the
configuration z(x ′x ′)z̄ and z(y ′, y ′)z̄ or/and between z(x ′, y ′)z̄ and z(y ′, x ′)z̄. The difference
in the first case is induced because the x ′-axis [110] is not equivalent to the y ′-axis [1̄10] in the
symmetry D2h(C2h), i.e. |χx ′x ′(a)|2 = |p + s|2 and |χy ′y ′(a)|2 = |p− s|2 as table 8 shows. For
the second case, |χx ′y ′(b)|2 = |q + r|2 and |χy ′x ′(b)|2 = |q − r|2. The observations of these
differences will support the D2h or C2h symmetry rather than D4h in the AF phase. Note also
that these differences originate in the B2g(s) and A2g(r) modes of the D4h representation.

The present CT model predicts the eigenenergies of A2g and B2g in D4h symmetry at an
energy of more than 3 eV as described in table 7. However, the intra-atomic transition from
Cu(3dxy) to Cu(3dx2−y2) has the excitation energy 1.4 eV for the metallic YBa2Cu3O7 [7].
Therefore we may expect the mixing of this intra-atomic transition with the CT excitation of the
B1g mode due to (55) through the lower-symmetry crystalline field of D2h(C2h) because those
excitation energies are close to each other. When we observe that |s| � |p| at E(A1g) and
|r| � |q| at E(B1g), the present CT model under D4h symmetry is well justified. When
|r| � |q|, the lower-symmetry crystalline field D2h should be taken into account as the
perturbation on the eigenstates of the D4h representation.

Two-photon absorption intensity should also obey the same polarization dependence given
by (48)–(51). We may expect the lower-symmetry crystalline field to be weak enough so that
this will be treated as the perturbations on the eigenstates obtained under the D4h point group.
We believe that the present model under D4h symmetry will give us a good starting point to
describe nonlinear optical responses of the insulating cuprates.

The tetragonal structure remains for Sr2CuO2Cl2 until low temperatures without suffering
the crystalline structure change into the orthorhombic phase. Therefore the description of
eigenstates based upon D4h symmetry will work correctly, in contrast to other crystals which
exhibit structural change into an orthorhombic phase. Observation of the large-shift RS for this
crystal has not been attempted yet. Therefore the observation of the polarization dependence
both of two-photon absorption and large-shift RS in this crystal will be able to establish the
validity of the present theory. The precise measurements of the polarization dependence
for Nd2CuO4, Gd2CuO4, La2CuO4 and YBa2Cu3O6 will give us further confirmation of the
present theory and information on how well these crystals may be described by D4h or D2h(C2h)

symmetry.
The calculated hole band widths 8tp = 4.0 eV (La2CuO4) and 4.4 eV (YBa2Cu3O6)

are close to the observed ones. On the other hand, the exciton band width is estimated as
2tp[t0/(Ep + Up)]2 = 10 meV and 40 meV for La2CuO4 and YBa2Cu3O6, respectively.
Deriving the dispersion relation of the bound as well as unbound electron–hole pair in the
present model is also a future problem.
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